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Abstract: The accuracy of non-invasive prenatal testing (NIPT) is susceptible to interference from 
factors such as gestational weeks (GW) and maternal body mass index (BMI), necessitating 
optimization of the testing timing and improvement of abnormal chromosome discrimination 
capabilities. Based on data from 515 male fetus samples and 382 female fetus samples, this study 
constructed a multi-stage coupled model system: Firstly, Spearman correlation and polynomial 
ridge regression were used to quantify the nonlinear relationship between fetal Y-chromosome 
concentration and GW/BMI. Further, a risk-constrained BMI dynamic grouping and timing decision 
framework was established by combining K-means clustering and survival analysis. Age, height, 
and other multi-features were introduced to extend the clustering model, evaluating error sensitivity. 
Finally, the Monte Carlo Dropout method was employed to enhance the robustness of female fetus 
chromosome abnormality discrimination. The results indicate that GW is the main explanatory 
variable for Y-chromosome concentration (explaining 55.1% of the variance), timing optimization 
based on BMI grouping significantly reduces clinical risk (timing shift <0.3 weeks under error 
perturbation), and the high BMI group is more sensitive to measurement errors (qualified rate 
decrease reached 8.25%). The discrimination model achieved a true positive rate (TPR) >80% while 
controlling the false positive rate (FPR) <15%. This study provides quantifiable decision support 
for clinical personalized NIPT timing selection and quality control. 

1. Introduction 
The prevention and control of birth defects are key links in improving population health levels. 

According to statistics from the National Health Commission of China, the incidence of birth 
defects in newborns in China is approximately 5.6%, with chromosomal abnormalities being one of 
the main causes. Non-invasive prenatal testing (NIPT), which screens for chromosomal 
abnormalities by analyzing fetal cell-free DNA (cfDNA) in maternal peripheral blood, has become 
the preferred clinical screening method. However, the reliability of this technology is constrained 
by fetal DNA concentration, which is closely related to factors such as maternal GW and BMI. 
Studies by Xue Ying et al. show that increasing GW can elevate cfDNA concentration, but the 
concentration variability significantly increases in obese pregnant women with BMI>30, leading to 
higher test failure rates or increased false-negative risks. 

Non-invasive prenatal testing (NIPT), by analyzing fetal cell-free DNA (cfDNA) in maternal 
peripheral blood to screen for chromosomal abnormalities, has become the core technology for 
prenatal screening. In recent years, its application scope has expanded from common aneuploidies 
(such as T21, T18, T13) to microdeletion/microduplication syndromes (MMS) and monogenic 
diseases [1]. Large-scale clinical validation shows that NIPT achieves a detection rate of 99.5% for 
T21 with a false positive rate of only 0.05%, significantly superior to traditional serological 
screening. However, cfDNA concentration is influenced by factors like GW and maternal BMI, 
which may lead to test failure or false negatives. Studies indicate that when GW is less than 10 
weeks, cfDNA concentration is below 4%, with a test failure rate as high as 8.3%; while pregnant 

2025 9th International Workshop on Materials Engineering and Computer Sciences (IWMECS 2025) 

Copyright © (2025) Francis Academic Press, UK DOI: 10.25236/iwmecs.2025.00762



women with BMI>30 experience increased cfDNA concentration dispersion, elevating the false-
negative risk by 37% [2]. Therefore, optimizing the testing timing is crucial for improving NIPT 
reliability. 

Gestational week is the primary determinant of cfDNA concentration. cfDNA originates from 
placental trophoblast cells, and its degree of fragmentation decreases as GW increases, leading to an 
increase in the proportion of detectable fragments. Maternal BMI indirectly affects cfDNA 
concentration through the blood dilution effect: higher BMI pregnant women have increased total 
plasma volume, diluting cfDNA and reducing the number of effective molecules per unit volume. A 
2023 multicenter study by Chen et al. showed that the median cfDNA concentration in pregnant 
women with BMI>35 was 1.7% lower than in the BMI<25 group (p=0.003), and the concentration 
variance expanded by 2.1 times [3]. Notably, there is an interaction effect between GW and BMI – 
pregnant women with high BMI require longer GW to reach the same detection threshold. This 
phenomenon was quantified by a kinetic model established by Zhang et al.: pregnant women with 
BMI>30 need to delay testing by 1.5–2 weeks to achieve equivalent concentration [4]. 

Traditional NIPT timing decisions rely on fixed GW thresholds (e.g., 12 weeks), ignoring 
individual differences among pregnant women. In recent years, statistical learning models have 
been introduced into the field of dynamic timing optimization, mainly including two types of 
methods: 

Clustering-Survival Analysis Joint Framework: Matching differentiated timing through BMI 
grouping. Wang et al. (2024) combined K-means clustering with the Kaplan-Meier survival 
function, dividing pregnant women into 4 BMI subgroups (range 26.7–46.9), and calculated the 
"qualified time distribution" for Y-chromosome concentration ≥4% in each group, ultimately 
determining the optimal timing to be 10–11.3 weeks [5]. This model was validated on 100,000 
samples, with a timing shift <0.3 weeks under error perturbation. 

Multi-Feature Reinforcement Learning Model: Integrating extended features such as age and 
pregnancy history. In 2025, Li et al. proposed a Deep Q-Network (DQN) model, using GW, BMI, 
and age as the state space, "test/wait" as the action space, and a reward function combining risk cost 
and testing benefit [6]. Simulation results showed that this model reduced the test failure rate in the 
high BMI group (>35) by 15.7%. 

Chromosome abnormality determination is shifting from threshold methods to probabilistic 
models. To address the issue of Z-value fluctuation in female fetus chromosomes, Garcia et al. 
(2023) used Monte Carlo Dropout to generate 200 perturbed data sets, outputting the abnormal 
probability P(abnormal), achieving a true positive rate of 82.4% while maintaining a false positive 
rate <15% [7]. 

Current research on NIPT timing optimization has significant limitations: Firstly, most models 
only consider the linear effect of a single factor (e.g., GW), failing to quantify multi-factor 
interactions; Secondly, BMI grouping strategies rely on empirical thresholds, lacking statistically 
driven dynamic partitioning methods; Thirdly, the discrimination of female fetus chromosome 
abnormalities does not integrate quantitative assessment of detection errors. Jiang Liya et al. 
pointed out that constructing a multi-factor coupled timing decision model is the core direction for 
improving the clinical efficacy of NIPT. 

Aiming at the above problems, this study proposes a multi-stage modeling framework: first, 
establish a nonlinear association model between GW/BMI and Y-chromosome concentration; then 
develop a BMI grouping and timing optimization method based on survival analysis; finally, 
enhance discrimination robustness through Monte Carlo perturbation. 

2. Methods 
This study aims to construct a multi-factor-driven model for optimizing non-invasive prenatal 

testing (NIPT) timing and determining fetal abnormalities. The methodological system comprises 
four core modules: fetal Y-chromosome concentration association model, BMI grouping-based 
testing timing optimization model, multi-feature extended timing decision model, and female fetus 
chromosome abnormality discrimination model. 
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2.1 Fetal Y-Chromosome Concentration Association Model 
Regarding the association between maternal GW (GW), BMI (BMI) and male fetus Y-

chromosome concentration (Y_conc), the data distribution characteristics were first verified using 
the Kolmogorov-Smirnov test(significance level α=0.05). Given that all variables showed non-
normal distributions (p < 0.05), Spearman rank correlation analysis was used to quantify the 
nonlinear relationship: 

𝑟𝑟𝑠𝑠 =
∑  𝑛𝑛
𝑖𝑖=1  (𝑅𝑅𝑊𝑊𝑖𝑖−𝑅𝑅‾𝑊𝑊)(𝑅𝑅𝑌𝑌𝑖𝑖−𝑅𝑅‾𝑌𝑌)

�∑  𝑛𝑛
𝑖𝑖=1  (𝑅𝑅𝑊𝑊𝑖𝑖−𝑅𝑅‾𝑊𝑊)2 ∑  𝑛𝑛

𝑖𝑖=1  (𝑅𝑅𝑌𝑌𝑖𝑖−𝑅𝑅‾𝑌𝑌)2
                                                   (1) 

Where 𝑟𝑟𝑠𝑠 is the rank difference, n is the sample size. 
To capture the interaction effect between GW and BMI, a third-order polynomial ridge 

regression model was established: 

𝑌𝑌frac = 𝛽𝛽0 + 𝛽𝛽1𝑊𝑊 + 𝛽𝛽2BMI + 𝛽𝛽3𝑊𝑊2 + 𝛽𝛽4𝑊𝑊 ⋅ BMI + 𝛽𝛽5BMI2 + 𝛽𝛽6𝑊𝑊3 + 𝛽𝛽7𝑊𝑊2 ⋅ BMI + 𝛽𝛽8𝑊𝑊 ⋅
BMI2 + 𝛽𝛽9BMI3 + 𝜖𝜖                                                   (2) 

The objective function is: 

min
𝛽𝛽
 ‖𝐲𝐲 − 𝚽𝚽𝛽𝛽‖2 + 𝜆𝜆‖𝛽𝛽‖2                                                           (3) 

Where X is the design matrix, and the regularization parameter λ was determined by 5-fold 
cross-validation. To evaluate model robustness, a bagged decision tree was simultaneously built as 
a control model, setting the number of decision trees B=100, minimum leaf node sample size 
min_samples_leaf=5, and generating a 90% confidence interval for predicted values through 
Bootstrap sampling (N=500). The relationship diagram is shown in Figure 1. 

 
Figure 1 Distribution of Gestational Week vs. Y-chromosome Concentration and Optimal Testing 

Timing by Group 

2.2 Testing Timing Optimization Based on BMI Grouping 

Using 𝑌𝑌frac ≥ 4%  as the detection qualification threshold, a clustering-survival analysis joint 
framework is proposed: 

(1) Dynamic BMI Grouping: Initially divide BMI into 4 classes using the K-means algorithm. 
The objective function is: 

min
{𝐶𝐶𝑔𝑔}

 ∑  4
𝑔𝑔=1 ∑  𝐱𝐱𝑖𝑖∈𝐶𝐶𝑔𝑔 ‖𝐱𝐱𝑖𝑖 − 𝜇𝜇𝑔𝑔‖2                                                       (4) 

Where 𝐶𝐶𝑔𝑔  is the sample set of group 𝑔𝑔 , 𝜇𝜇𝑔𝑔  is the cluster center. Further optimize group 
boundaries through recursive bisection to maximize the Kolmogorov-Smirnov distance: 

𝐷𝐷KS = sup
𝑡𝑡
 |𝑆𝑆1(𝑡𝑡) − 𝑆𝑆2(𝑡𝑡)|                                                     (5) 
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Ensuring significant differences in survival distributions between groups (𝐷𝐷KS > 0.3,𝑝𝑝 < 0.01). 
(2) Risk-Constrained Timing Decision: Define the survival function 𝑆𝑆𝑔𝑔(𝑡𝑡)  representing the 

probability that group k has not reached the qualified threshold  by GW t. Construct an optimization 
model: 

min
𝑡𝑡
 ∑  4
𝑔𝑔=1 𝑤𝑤𝑔𝑔 ⋅ (1 − 𝑄𝑄𝑔𝑔(𝑡𝑡)), s.t. 𝑆𝑆𝑔𝑔(𝑡𝑡) ≥ 0.85                                         (6) 

Where 𝑄𝑄𝑔𝑔(𝑡𝑡) is the minimum qualified rate, and the weight coefficient 𝑤𝑤𝑔𝑔 is set to 1.0, 0.7, and 
0.3 for early (<12 weeks), middle (12-20 weeks), and late (>20 weeks) pregnancy stages, 
respectively. Model robustness was evaluated through error propagation analysis (sensitivity ±5%, 
specificity ±5%, threshold ±0.5%). 

2.3 Multi-Feature Driven Timing Decision Model 
Introduce features such as age, height, and number of pregnancies to extend the analysis: 
(1) Multi-Feature Clustering: Standardize the feature vector using Z-score: 

𝑧𝑧𝑗𝑗 = 𝑥𝑥𝑗𝑗−𝜇𝜇𝑗𝑗
𝜎𝜎𝑗𝑗

                                                                            (7) 

Construct a weighted K-means objective function: 

min
{𝐶𝐶𝑘𝑘}

 ∑  𝐾𝐾
𝑘𝑘=1 ∑  𝐳𝐳𝑖𝑖∈𝐶𝐶𝑘𝑘 ‖𝐳𝐳𝑖𝑖 − 𝜇𝜇𝑘𝑘‖2,𝐾𝐾 = 3                                             (8) 

Intra-group differences were verified using the Silhouette Coefficient. 
(2) Dual Error Robustness Test: Apply ±10% systematic error to input features: 

𝐱̃𝐱 = 𝐱𝐱 ⋅ (1 + 𝛿𝛿), 𝛿𝛿 ∼ 𝑈𝑈[−0.1,0.1]                                                     (9) 
Recalculate the qualified rate and optimal timing. 

2.4 Female Fetus Chromosome Abnormality Discrimination Model 
For female fetus samples (n=382): 
(1) Quality Control and Feature Processing: Set a GC content threshold to remove low-quality 

samples. Perform Min-Max normalization on Z-value and read proportion. 
(2) Monte Carlo Dropout Classification: Add Gaussian noise to samples passing QC: 

𝐱𝐱(𝑏𝑏) = 𝐱𝐱 + 𝜖𝜖𝑏𝑏, 𝜖𝜖𝑏𝑏 ∼ 𝒩𝒩(0,𝜎𝜎2𝐼𝐼),𝜎𝜎 = 0.05                                    (10) 

Generate 𝐵𝐵 = 200 perturbed datasets, output the abnormal probability: 

𝑃𝑃(abnormal) = 1
𝐵𝐵
∑  𝐵𝐵
𝑏𝑏=1 𝟏𝟏�𝑓𝑓(𝐱𝐱(𝑏𝑏)) > 𝜏𝜏�                                        (11) 

(3) Constrained Optimization Objective: Maximize true positive rate (TPR) while controlling 
false positive rate (FPR): 

max
𝜏𝜏
 TPR(𝜏𝜏) − 𝜆𝜆 ⋅ FPR(𝜏𝜏), 𝜆𝜆 = 2.0                                                (12) 

The optimal threshold was determined by grid search. 

3. Experiments and Results 
3.1 Data Description 

This study constructed models based on 515 male fetus samples (GW range: 10-25 weeks) and 
382 female fetus samples. Data preprocessing included missing value handling (median imputation), 
outlier detection (Z-score and IQR methods), and feature standardization (Z-score normalization). 
Key variable distribution characteristics are as follows: 

Gestational Week Distribution: Samples were concentrated between 12-20 weeks (Mean GW = 
16.8 weeks, SD = 3.2), with a low proportion of early samples (<12 weeks), as shown in Figure 2. 
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Figure 2 Gestational Week Distribution 

Y-Chromosome Concentration: Showed a right-skewed distribution (Median Y_conc = 8.7%, 
IQR = 3.2%), as shown in Figure 3. 

 

Figure 3: Y-Chromosome Concentration Distribution 
BMI Distribution: Highly concentrated in the 28-35 range (Mean BMI = 31.7, SD = 4.5), with 

significant proportions of overweight and obese groups, as shown in Figure 4. 

 
Figure 4: BMI Distribution 

Inter-variable relationships were visualized through scatter plots, as shown in Figures 5 and 6. 

 
Figure 5: Scatter Plot of Chromosome Concentration vs. BMI 
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Figure 6: Scatter Plot of Gestational Week vs. BMI 

(1)Y-chromosome concentration showed a weak positive correlation trend with GW (ρ = 0.32, p 
< 0.001), consistent with the biological pattern of fetal cfDNA accumulation over GW. 

(2)Y-chromosome concentration showed no significant correlation with BMI (ρ = -0.08, p = 
0.11), with data points scattered across the full BMI range (25-45). 

3.2 Results Analysis 
3.2.1 Y-Chromosome Concentration Association Model 

A third-order polynomial ridge regression was used to fit the relationship between GW, BMI, 
and Y-chromosome concentration (Figure: Fitted Curve). Key findings are as follows: 

(1)Model Explanatory Power: The overall regression equation was significant (F = 128.6, p < 
0.001), with the independent variables jointly explaining 55.1% of the variance in the dependent 
variable (Adj. R² = 0.551). 

(2)Gestational Week Effect: As shown in Figure 7, when fixing BMI at the median (32.1), Y-
chromosome concentration showed a monotonically increasing trend with increasing GW. 
Prediction uncertainty decreased significantly in the middle and late stages of pregnancy (>18 
weeks) (90% confidence band width reduced by 40%). 

 
Figure 7: Gestational Week vs. Y-Chromosome Concentration Relationship 

(3)Model Robustness: The bagged decision tree model showed consistent trends with the ridge 
regression (maximum deviation <0.8%), verifying the reliability of the nonlinear relationship. 

3.2.2 BMI Grouping and Timing Optimization 
Based on the K-means and survival analysis joint framework, four BMI partitions and optimal 

testing timings were obtained (Table 1): 
Table 1: BMI Grouping and Timing Optimization Results 

Group BMI Range Optimal Timing (weeks) Qualified Rate (%) 
G1 [26.70, 29.66] 10.0 89.13 
G2 [29.66, 33.11] 10.0 89.79 
G3 [33.11, 35.90] 11.0 86.22 
G4 [35.90, 46.88] 11.3 87.18 

Key conclusions: 
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(1)Grouping Effectiveness: Box plots showed significant differences in BMI distribution 
between groups (KS distance > 0.45, p < 0.01), and intra-group dispersion increased with higher 
BMI. 

(2)Timing Decision Basis: Risk analysis plots indicated that the risk was lowest around 11 weeks 
gestation for all groups (risk value on the vertical axis decreased >15%). 

(3)Error Sensitivity: When test sensitivity/specificity was perturbed by ±5%, the optimal timing 
shift was <0.3 weeks, demonstrating the clinical robustness of the grouping strategy. 

3.2.3 Multi-Feature Extended Analysis 
After introducing features such as age, height, and weight, K-means clustering was optimized 

into three groups (as shown in Table 2): 
Table 2: K-means Clustering Results 

Group BMI Range Age Range Optimal Timing 
(weeks) 

Qualified Rate Decrease after 
Dual Error 

G1 [20.70, 38.22] [22, 33] 11.0 3.75% 
G2 [28.07, 36.79] [21, 30] 10.9 3.76% 
G3 [27.92, 46.88] [22, 43] 11.0 8.25% 
Core findings: 
(1) Feature Interaction Effect: The high BMI group (G3), accompanied by high weight (Mean 

Weight = 89.6 kg) and medium height (Mean Height = 162.3 cm), exhibited the largest dispersion 
in Y-chromosome concentration (CV = 0.28). 

(2) Difference in Error Sensitivity: After dual error perturbation (Y concentration ±10%, GW 
±10%), the qualified rate decrease for group G3 reached 8.25% (G1/G2 <4%), indicating that the 
high BMI group is more sensitive to measurement errors. 

3.2.4 Female Fetus Chromosome Abnormality Discrimination 
The performance of the Monte Carlo Dropout model in discriminating female fetus chromosome 

abnormalities is as follows: 
(1)Overall Performance: Area under the ROC curve AUC=0.71, significantly better than random 

guessing (p < 0.001). 
(2)High Sensitivity Region: Sensitivity heatmaps showed that when the Z-value threshold ∈ [-

3.0, 3.5] and GC content ∈ [0.45, 0.55], the true positive rate (TPR) >80%. 
(3)False Positive Control: Through penalty term (λ = 0.1) constraint, the false positive rate (FPR) 

was controlled below 15%, satisfying the clinical principle of "few missed diagnoses". 

4. Conclusion 
This study constructed a multi-factor coupled model system for NIPT timing optimization and 

fetal abnormality determination. The main conclusions are as follows: 
Fetal Y-chromosome concentration is mainly affected by gestational week (GW) and shows no 

significant correlation with BMI. The quantitative model based on third-order polynomial ridge 
regression indicates that GW explains 55.1% of the concentration variation, and prediction 
uncertainty significantly decreases when GW >18 weeks. This finding is consistent with the 
research by Xue Ying et al. on cfDNA accumulation patterns but further reveals the indirect 
regulatory role of BMI at the grouping level. 

Through the K-means clustering and survival analysis joint framework, dynamic optimization of 
BMI grouping (four group intervals) and risk-constrained timing decisions were achieved. The 
optimal testing timings for the four groups are concentrated between 10-11.3 weeks, with risk 
values decreasing by over 15% around 11 weeks of gestation. The model remains stable under 
sensitivity/specificity perturbation (timing shift <0.3 weeks). This method overcomes the 
limitations of traditional fixed BMI thresholds and provides an actionable personalized screening 
window for clinical practice. 
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After introducing multiple features such as age, height, and weight, the clustering model 
identified that the high BMI-high weight combination (Group G3) is more sensitive to Y-
concentration measurement errors (qualified rate decrease of 8.25% under dual error). This result 
suggests that for obese pregnant women, optimizing detection accuracy or scheduling earlier re-
examination timings should be prioritized, complementing the conclusions of Xu Guangxia et al. on 
the economic evaluation of screening strategies. 

The female fetus chromosome abnormality discrimination model integrates uncertainty through 
the Monte Carlo Dropout method, achieving a true positive rate (TPR) >80% while controlling the 
false positive rate (FPR) <15%, with an AUC of 0.71. Sensitivity heatmaps indicate that high 
discrimination performance is concentrated within the Z-value threshold [-3.0, 3.5] and GC content 
[0.45, 0.55] intervals, providing clear guidance for clinical parameter tuning. 

The limitations of this study lie in not incorporating potential influencing factors such as dietary 
habits and genetic history, and not modeling fetal-specific abnormality risks. Future work will 
deepen model transferability by combining multi-center clinical data and develop a real-time risk 
early warning system, promoting the development of NIPT technology towards intelligence and 
precision. 
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